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Lower bounds for volumes and orthospectra of
hyperbolic manifolds with geodesic boundary

MIKHAIL BELOLIPETSKY

MARTIN BRIDGEMAN

We derive explicit estimates for the functions which appear in the previous work of
Bridgeman and Kahn. As a consequence, we obtain an explicit lower bound for the
length of the shortest orthogeodesic in terms of the volume of a hyperbolic manifold
with totally geodesic boundary. We also give an alternative derivation of a lower
bound for the volumes of these manifolds as a function of the dimension.
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1 Introduction

Let M be a compact hyperbolic n–dimensional manifold with nonempty totally geodesic
boundary. An orthogeodesic of M is a geodesic arc with endpoints in @M which are
perpendicular to @M at the endpoints. The orthospectrum ƒM of M is the set (with
multiplicities) of lengths of orthogeodesics. As the orthogeodesics of M correspond
to a subset of the closed geodesics of its double, the set of orthogeodesics of M is
countable. We let Vol.M / and Vol.@M / be the volumes of the hyperbolic manifolds M

and @M. We further let L.M / be the length of the shortest orthogeodesic of M. We
will explore the relation between the three quantities Vol.M /, Vol.@M / and L.M /.

The orthospectrum was first introduced by Basmajian [2], who showed that a totally
geodesic hypersurface S in a hyperbolic manifold can be decomposed into embedded
disks which are in one-to-one correspondence with the orthogeodesics of the mani-
fold M obtained by cutting along the hypersurface S. Then, by describing the radii
of the disks in terms of the length of the corresponding orthogeodesics, Basmajian
obtained the orthospectrum identity

Vol.S/D
X

l2ƒM

Vn�1

�
log coth

�
1
2
l
��
;

where Vn.r/ is the volume of a hyperbolic ball of radius r in Hn.
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Using a decomposition of the tangent bundle via orthogeodesics, the second author and
Kahn proved the following:

Theorem 1 (Bridgeman and Kahn [6]) Given n � 2, there exists a continuous
monotonically decreasing function Fn W RC ! RC such that , if M is a compact
hyperbolic n–manifold with nonempty totally geodesic boundary, then

Vol.M /D
X

l2ƒM

Fn.l/:

The function Fn is given by an integral formula; see (4) below. The above theorem was
generalized to noncompact finite-volume hyperbolic manifolds with totally geodesic
boundary by Vlamis and Yarmola [13].

An analysis of the asymptotic behavior of Fn.l/ as l! 0 gives:

Theorem 2 (Bridgeman and Kahn [6]) For n � 3, there exists a monotonically
increasing function Hn WRC!RC and a constant Cn > 0 such that , if M is a compact
hyperbolic n–manifold with totally geodesic boundary with Vol.@M /DA, then

Vol.M /�Hn.A/� Cn �A
.n�2/=.n�1/:

The functions Fn and Hn and the implied constants Cn which appear in [6] are defined
by complicated formulas and it is difficult to evaluate or estimate them. We resolve
this issue and find explicit lower bounds in terms of the dimension n. We first prove
the following relation between Vol.M / and L.M /:

Theorem 3 For n � 3, if M is a compact hyperbolic n–manifold M with totally
geodesic boundary, then either L.M /� 1

2
log 5

2
or

(1) eL.M /
� 1� gn

r
2�e

n�1
� .Vol.M //�1=.n�2/;

where gn is an explicit monotonically increasing function tending to 1.

The function gn is given by (6) below. In particular, the first few approximate values
are g3 D 0:120822, g4 D 0:464543, g5 D 0:563796, g6 D 0:617183.

One consequence of Theorem 3 is the following dichotomy between volume and
shortest orthogeodesic:
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Corollary 4 Let M be a compact hyperbolic manifold with nonempty totally geodesic
boundary of dimension n� 3. Then either

Vol.M /� 1 or eL.M /
� 1�min

�p
5=2� 1;gn

r
2�e

n�1

�
:

The results of [6] have a number of applications that can be made more precise now.
For example, Belolipetsky and Thomson [5] used them to estimate the volumes of
hyperbolic manifolds with small systole constructed there. Inequality (1) allows us to
restate the inequality from [5, Theorem 1.2]:

Corollary 5 Hyperbolic manifolds with small systole constructed by Belolipetsky–
Thomson in [5] satisfy

Vol.M /�

�
1
2
gn

r
2�e

n�1
�

1

Syst1.M /

�n�2

:

We also use our analysis to investigate the relation between Vol.M / and Vol.@M /,
which we compare with the results of Miyamoto in [12]. We prove:

Theorem 6 Let M be a compact hyperbolic manifold with nonempty totally geodesic
boundary of dimension n� 3. Then either

(2) Vol.M /� 1
4

log 5
2

Vol.@M / or Vol.M /� 1
3
hn

r
2�e

n�1
.Vol.@M //.n�2/=.n�1/;

where hn is an explicit monotonically increasing function tending to 1.

The function hn is given by (7), with the first few approximate values h3 D 0:203335,
h4 D 0:448875, h5 D 0:542675, h6 D 0:601147.

In earlier work Miyamoto obtained a lower bound for the volume in terms of a linear
function of the volume of the boundary:

Theorem 7 (Miyamoto [12, Theorem 4.2]) Let M be a hyperbolic n–manifold with
totally geodesic boundary. Then there are constants �n > 0 such that

(3) Vol.M /� �n �Vol.@M /:

One application of both (2) and (3) is to obtain lower bounds on the volume of a
hyperbolic manifold with totally geodesic boundary in terms of the dimension. Although
both use very different methods, their resulting bounds are surprisingly similar.
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For n even, applying the Gauss–Bonnet formula for the double DM gives

Vol.M /D 1
2

Vol.DM /D 1
4
j�.DM /jVn �

1
4
Vn;

where Vn is the volume of the unit n–sphere in RnC1. For n odd, both (2) and (3) can
be used to leverage the Gauss–Bonnet theorem on the boundary to give lower bounds
for the volume of the manifolds.

In [9], Kellerhals used packing estimates to show that Miyamoto’s function �n is
monotonically increasing with the approximate values �3 D 0:29156, �4 D 0:43219,
�5 D 0:54167, �6 D 0:64652.

Thus, for M a hyperbolic n–manifold with nonempty totally geodesic boundary and n

odd, we have

Vol.M /� 1
2
�nVn�1:

Using our bound in (2), we can derive a similar estimate. We prove:

Theorem 8 Let M be a hyperbolic n–manifold with nonempty totally geodesic bound-
ary and n odd. Then

Vol.M /�min
�

1
8

log 5
2
; 1

6
hn

�
Vn�1:

The paper is organized as follows. We first describe the functions Fn.x/ and Mn.x/

and, by a careful analysis, obtain uniform lower bounds for each as functions of n

and x. An important step is bounding an incomplete Beta function which requires
us to restrict to x � 1

2
log 5

2
(see Lemma 12). We then apply these bounds to prove

the bounds on volume and ortholength in Theorems 3 and 6 above. In Section 5 we
consider more carefully the 3–dimensional case. In Section 6 we conclude with the
proof of Theorem 8 and a related discussion.

Acknowledgments We thank Ruth Kellerhals for helpful correspondence. We would
also like to thank the referee for their comments and insights which improved the paper.
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2 The functions Fn and Mn

In previous work, an integral formula for Fn is derived: We let Vk be the volume of
the unit k–sphere in RkC1. Then, from [6], we have1

(4) Fn.l/D
2n�1Vn�2Vn�3

Vn�1

Z 1

0

rn�3

.
p

1� r2/n�2
Mn

�r
e2l�r2

1�r2

�
dr;

where

(5) Mn.b/D

Z 1

�1

du

Z 1
b

log..v2� 1/.u2� b2/=.v2� b2/.u2� 1//

.v�u/n
dv:

Furthermore, it is shown that the function Mn.b/ can be given in terms of standard
functions. In order to describe this function, we define the following: For n � 1 we
define the polynomial function Pn by

Pn.x/D

nX
kD1

xk

k
:

We also define P0.x/ D 0. We note that for jxj < 1, Pn.x/ is the first n terms
of the Taylor series of �log.1 � x/. We therefore define the function Ln.x/ by
Ln.x/D log j1�xjCPn.x/. For jxj< 1 we have

Ln.x/D�

1X
kDnC1

xk

k
:

We note that L0.x/D log j1�xj. We also note that Pn.1/D 1C 1
2
C � � �C

1
n

, the nth

Harmonic number. Using these functions, Mn can be written down explicitly:

Lemma 9 (Bridgeman and Kahn [6, Lemma 7]) The function Mn W .1;1/! RC
has the explicit form

(n�1/.n�2/Mn.b/

D
1

.b�1/n�2

�
log

.bC1/2

4b
C2Pn�2.1/�Ln�3

�
b�1

bC1

�
�.�1/nLn�3

�
�bC1

bC1

��
C

1

.bC1/n�2

�
�log

.b�1/2

4b
�2Pn�2.1/CLn�3

�
bC1

b�1

�
C.�1/nLn�3

�
�b�1

b�1

��
C

1

.2b/n�2

�
Ln�3

�
2b

bC1

�
�Ln�3

�
2b

b�1

��
C

1

2n�2

�
Ln�3

�
2

bC1

�
�.�1/nLn�3

�
�2

b�1

��
:

1The original formula had an incorrect factor of 2 rather than 2n�1, which was corrected by Theorem 2.1
of [13].
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Furthermore , Mn satisfies

lim
b!1C

.b� 1/n�2Mn.b/D
2Pn�2.1/

.n� 1/.n� 2/
and lim

b!1

bn�1

log b
Mn.b/D

4

n�1
:

We note that the above is a consequence of the following formulas:

Lemma 10 (Bridgeman and Kahn [6, Corollary 6]) For n� 2Z
log jx� aj

.x� b/n
dx D

1

n�1

�
Ln�2..a� b/=.x� b//

.a� b/n�1
�

log jx� aj

.x� b/n�1

�
:

Furthermore , for k � 1,

lim
x!a

�
log jx� aj

.b�x/k
�

Ln..b� a/=.b�x//

.b� a/k

�
D

log jb� aj �Pn.1/

.b� a/k
:

3 Explicit lower bounds for Fn and Mn

In this section, we give explicit lower bounds on for the functions Fn and Mn. As
these functions are only defined for n� 3, in the following a standing assumption is
that n� 3. In order to obtain our bounds, we need to derive a lower bound on Mn.b/

which is uniform both in n and b. By Lemma 9, we have

lim
b!1C

.b� 1/n�2Mn.b/D
2Pn�2.1/

.n� 1/.n� 2/
:

We prove the following uniform lower bound:

Lemma 11 For b 2 .1; 2�,

.b� 1/n�2Mn.b/�
Pn�3.1/C

�
1� 1=3n�2

��
Pn�2.1/C log 3

4

�
.n� 1/.n� 2/

:

Proof From (5), for Mn we have that

Mn.b/D

Z 1

�1

du

Z 1
b

log..v2� 1/.b2�u2/=.v2� b2/.1�u2//

.v�u/n
dv

�

Z 1

�1

du

Z 1
b

log..v2� 1/.b�u/=.v2� b2/.1�u//

.v�u/n
dv

as bCu> 1Cu. We split the interior integral on the right into two integrals,

I1 D�

Z 1
b

log.v� b/

.v�u/n
dv; I2 D

Z 1
b

log..v2� 1/.b�u/=.vC b/.1�u//

.v�u/n
dv:
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By Lemma 10, we have

I1 D
1

n�1

�
log.v� b/

.v�u/n�1
�

Ln�2..b�u/=.v�u//

.b�u/n�1

�ˇ̌̌̌1
b

D
1

n�1
lim

v!bC

�
Ln�2..b�u/=.v�u//

.b�u/n�1
�

log.v� b/

.v�u/n�1

�
:

By the limit in Lemma 10, we have

I1 D
1

n�1

�
Pn�2.1/� log.b�u/

.b�u/n�1

�
:

Integrating by parts, we get

I2 D�
1

n�1

�
log..v2� 1/.b�u/=.vC b/.1�u//

.v�u/n�1

ˇ̌̌̌1
b

C

Z 1
b

dv

.v�u/n�1

�
1

v�1
C

1

vC1
�

1

vCb

��
:

As vC b > vC 1, we have

1

v�1
C

1

vC1
�

1

vCb
�

1

v�1
> 0:

Therefore,

I2 � �
1

n�1

�
log..v2� 1/.b�u/=.vC b/.1�u//

.v�u/n�1

ˇ̌̌̌1
b

�
D

1

n�1

�
log..b2� 1/.b�u/=.2b/.1�u//

.b�u/n�1

�
:

Therefore, combining, we have

Mn.b/�
1

n�1

�Z 1

�1

log..b2� 1/=2b.1�u//CPn�2.1/

.b�u/n�1
du

�
D J1.b/CJ2.b/;

where

J1.b/D
1

n�1

�Z 1

�1

log..b2� 1/=2b/CPn�2.1/

.b�u/n�1
du

�
;

J2.b/D
1

n�1

�Z 1

�1

�log.1�u/

.b�u/n�1
du

�
:

By integration, we have

J1.b/D
log..b2� 1/=2b/CPn�2.1/

.n� 1/.n� 2/

�
1

.b� 1/n�2
�

1

.bC 1/n�2

�
:
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Using Lemma 10, we get

J2.b/D
1

.n� 1/.n� 2/

�
�log.1�u/

.b�u/n�2
C

Ln�3..b� 1/=.b�u//

.b� 1/n�2

�ˇ̌̌̌1
�1

:

Therefore,

.n�1/.n�2/J2.b/D
�Ln�3..b�1/=.bC1//

.b�1/n�2

C
log 2

.bC1/n�2
C lim

u!1�

�
�

log.1�u/

.b�u/n�2
C

Ln�3..b�1/=.b�u//

.b�1/n�2

�
:

By Lemma 10, we have the limit

lim
u!1�

�
�

log.1�u/

.b�u/n�2
C

Ln�3..b� 1/=.b�u//

.b� 1/n�2

�
D

Pn�3.1/� log.b� 1/

.b� 1/n�2
:

Combining, we get

.n�1/.n�2/J2.b/D
�log.b� 1/CPn�3.1/�Ln�3..b� 1/=.bC 1//

.b� 1/n�2
C

log 2

.bC 1/n�2
:

Thus,

.n�1/.n�2/Mn.b/�
log..bC1/=2b/CPn�2.1/CPn�3.1/�Ln�3..b�1/=.bC1//

.b�1/n�2

C
log.4b=.b2�1//�Pn�2.1/

.bC1/n�2
:

For b 2 .1; 2�, we have

log bC1

2b
CPn�2.1/� log 3

4
C 1> 0 and �Ln�3

�
b�1

bC1

�
> 0;

giving

.n� 1/.n� 2/Mn.b/�
Pn�3.1/

.b� 1/n�2
C

log..bC 1/=2b/CPn�2.1/

.b� 1/n�2

C
log.4b=.b2� 1//�Pn�2.1/

.bC 1/n�2
:

As .bC 1/=.b� 1/� 3 on .1; 2�, we have

log..bC1/=2b/CPn�2.1/

.b�1/n�2

D

�
1�

1

3n�2

��
log..bC1/=2b/CPn�2.1/

.b�1/n�2

�
C

1

3n�2

�
log..bC1/=2b/CPn�2.1/

.b�1/n�2

�
�

�
1�

1

3n�2

��
log..bC1/=2b/CPn�2.1/

.b�1/n�2

�
C

log..bC1/=2b/CPn�2.1/

.bC1/n�2
:
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Therefore,

.n�1/.n�2/Mn.b/�
Pn�3.1/C.1�1=3n�2/

�
log..bC1/=2b/CPn�2.1/

�
.b�1/n�2

C
log..bC1/=2b/CPn�2.1/Clog.4b=.b2�1//�Pn�2.1/

.bC1/n�2
:

This gives

.n� 1/.n� 2/Mn.b/�
Pn�3.1/C .1� 1=3n�2/

�
log..bC 1/=2b/CPn�2.1/

�
.b� 1/n�2

C
log.2=.b� 1//

.bC 1/n�2
:

Finally,

.n�1/.n�2/Mn.b/�
Pn�3.1/C .1� 1=3n�2/

�
log 3

4
CPn�2.1/

�
.b� 1/n�2

�
0:474879

.b� 1/n�2
:

With this bound in hand, we now find a lower bound for Fn.x/ by integration.

Lemma 12 For l � 1
2

log 5
2

, we have

Fn.l/�
Kn

.el � 1/n�2
;

where

Kn D

�
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

��
2n�2Vn�2Vn�3�.

1
2
n/2

.n� 2/2Vn�1�.n/
:

Proof We let aD el . Then, by Lemma 11 above, we have

Mn

�r
a2�r2

1�r2

�
�

An�p
.a2� r2/=.1� r2/� 1

�n�2
for

r
a2�r2

1�r2
� 2;

where

An D
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

�
.n� 1/.n� 2/

:

Solving this for r <
p

1
3
.4� a2/D r.a/, we obtain

Fn.l/�
2n�1Vn�2Vn�3

Vn�1

Z r.a/

0

rn�3

.
p

1� r2/n�2

An�p
.a2� r2/=.1� r2/� 1

�n�2
dr:
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Simplifying, we get

Fn.l/�
2n�1AnVn�2Vn�3

Vn�1

Z r.a/

0

rn�3

.
p

a2� r2�
p

1� r2/n�2
dr

D
2n�1AnVn�2Vn�3

Vn�1

Z r.a/

0

rn�3

�p
a2� r2C

p
1� r2

a2� 1

�n�2

dr:

As
p

a2� r2=
p

1� r2 � a, we have
p

a2� r2C
p

1� r2 � .aC 1/
p

1� r2, giving

Fn.l/�
2n�1AnVn�2Vn�3

.a� 1/n�2Vn�1

Z r.a/

0

rn�3.
p

1� r2/n�2 dr:

Therefore,

Fn.l/�
2n�1AnVn�2Vn�3

.a� 1/n�2Vn�1

Z r.a/

0

rn�3.1� r2/n=2�1 dr:

We change the variable to t D r2 to get

Fn.l/�
2n�2AnVn�2Vn�3

.a� 1/n�2Vn�1

Z r.a/2

0

tn=2�2.1� t/n=2�1 dt:

The Beta function B.a; b/ and the incomplete Beta function B.x W a; b/ are defined by

B.a; b/D

Z 1

0

ta�1.1� t/b�1 dt; B.x W a; b/D

Z x

0

ta�1.1� t/b�1 dt:

Therefore,
Fn.l/�

2n�2AnVn�2Vn�3

.a� 1/n�2Vn�1

B
�
r.a/2 W 1

2
n� 1; 1

2
n
�
:

We note that
B.a� 1; a/D B

�
1
2
W a� 1; a

�
CB

�
1
2
W a; a� 1

�
:

On
�
0; 1

2

�
, as t < 1� t , we have ta�1.1� t/a�2 � ta�2.1� t/a�1, giving

B
�

1
2
W a� 1; a

�
� B

�
1
2
W a; a� 1

�
:

Thus, B
�

1
2
W a� 1; a

�
�

1
2
B.a� 1; a/.

Therefore, if we let r.a/2 � 1
2

, then

B
�
r.a/2 W 1

2
n� 1; 1

2
n
�
�

1
2
B
�

1
2
n� 1; 1

2
n
�
D
�
�

1
2
n� 1

�
�
�

1
2
n
�

2�.n� 1/
D

n� 1

n� 2

�
�

1
2
n
�2

�.n/
:

For r.a/2 � 1
2

, we require a�
p

5=2. Therefore, for l � 1
2

log 5
2

, we have

F.l/�

�
Pn�3.1/C.1�1=3n�2/

�
Pn�2.1/Clog 3

4

��
2n�2Vn�2Vn�3�

�
1
2
n
�2

.n�2/2Vn�1�.n/

1

.el�1/n�2
:

This concludes the proof.

Algebraic & Geometric Topology, Volume 22 (2022)



Lower bounds for volumes and orthospectra of hyperbolic manifolds 1265

4 Systole and volume estimates

We now use the bound for F.l/ to obtain a lower bound on the length of the shortest
orthogeodesic and to obtain lower bounds on volume in terms of the area of the boundary.
We first will need the following elementary calculation:

Lemma 13 The constants Kn from Lemma 12 satisfy

Kn �

�
2�e

n�1

�.n�1/=2 3
�
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

��
23=2e5=2.n� 2/

:

Proof The volumes of spheres are given by

Vn D
.nC 1/�.nC1/=2

�
�

1
2
.nC 3/

� :

We have Legendre’s replacement formula

�.z/�
�
zC 1

2

�
D 21�2z

p
��.2z/:

Thus,

2n�2Vn�2Vn�3�
�

1
2
n
�2

.n� 2/2Vn�1�.n/
D
.n� 1/2n�2�.n�3/=2�

�
1
2
.nC 2/

�
�
�

1
2
n
�

.n� 2/n�
�

1
2
.nC 1/

�
�.n/

D
.n� 1/�.n�2/=2�

�
1
2
.nC 2/

�
2.n� 2/n�

�
1
2
.nC 1/

�2 :

By using the upper and lower bounds for the Gamma function
p

2�xxC1=2e�x
� �.xC 1/� exxC1=2e�x;

we obtain

.n� 1/�.n�2/=2�
�

1
2
.nC 2/

�
2.n� 2/n�

�
1
2
.nC 1/

�2 �
.n� 1/�.n�2/=2

�p
2�
�

1
2
n
�.nC1/=2

e�n=2
�

2.n� 2/n
�
e2
�

1
2
.n� 1/

�n
e�.n�1/

�
D

2n=2�1�.n�1/=2n.n�1/=2en=2�3

.n� 2/.n� 1/n�1
:

Thus,

Kn �

�
2�ne

.n� 1/2

�.n�1/=2 Pn�3.1/C .1� 1=3n�2/
�
Pn�2.1/C log 3

4

�
.n� 2/e5=2

p
2

:
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Finally, .n=.n � 1//.n�1/=2 is monotonically increasing; then, as n � 3, we have
.n=.n� 1//.n�1/=2 �

3
2

, so

Kn �

�
2�e

n�1

�.n�1/=2 3
�
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

��
2.n� 2/e5=2

p
2

:

We now can prove the bound in Theorem 3, which we restate below:

Theorem 3 Let M be a compact hyperbolic n–manifold with totally geodesic bound-
ary. Then either L.M / > 1

2
log 5

2
or

eL.M /
� 1� gn

r
2�e

n�1
.Vol.M //�1=.n�2/;

where gn is an explicit monotonically increasing function tending to 1.

Proof Let LD L.M /. If L� 1
2

log 5
2

, then, by Lemma 12,

Vol.M /� Fn.L/�
Kn

.eL� 1/n�2
:

Solving the latter, we have

eL
� 1�

�
Kn

Vol.M /

�1=.n�2/

;

which gives
eL
� 1�K1=.n�2/

n Vol.M /�1=.n�2/:

Therefore, by Lemma 13, we have

eL
� 1� gn

r
2�e

n�1
.Vol.M //�1=.n�2/;

where

(6) gn D

�
3
p
�
�
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

��
2.n� 2/.n� 1/1=2e2

�1=.n�2/

:

We now obtain a lower bound on the volume in terms of the boundary area. We will
need an auxiliary function Sn given by

Sn.x/D

Z x

0

coshn�1.r/ dr:

We prove Theorem 6, which we first restate:
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Theorem 6 Let M be a hyperbolic manifold with totally geodesic boundary. Then
either

Vol.M /� 1
4

log 5
2

Vol.@M /

or

Vol.M /� 1
3
hn

r
2�e

n�1
Vol.@M /.n�2/=.n�1/;

where hn is an explicit monotonically increasing function tending to 1.

Proof Let LD L.M /;V D Vol.M /;AD Vol.@M /. Then, by Theorem 1,

V � Fn.L/:

Further, the totally geodesic boundary @M has embedded collar of radius 1
2
L. By

elementary hyperbolic geometry, this embedded collar has volume A �Sn

�
1
2
L
�
. Thus,

V �A �Sn

�
1
2
L
�
�A � 1

2
L:

It follows that
V �max

�
Fn.L/;A �

1
2
L
�
:

As Fn.x/ is monotonically decreasing and 1
2
Ax monotonically increasing, we have a

unique l > 0 satisfying
Fn.l/DA � 1

2
l:

Furthermore, it follows that V �A � 1
2
l . If l � 1

2
log 5

2
, then

V � 1
4

log 5
2
A;

giving the first inequality of the theorem.

Now assume that l � 1
2

log 5
2

. Then, by Lemma 12,

V �max
�

Kn

.el � 1/n�2
;A � 1

2
l

�
:

We therefore consider l0, the unique solution of

Kn

.el0 � 1/n�2
DA � 1

2
l0:

We observe that l0 � l and therefore we have l0 �
1
2

log 5
2

. Solving

A � 1
2
l0 D

Kn

.el0 � 1/n�2
;
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we obtain

.el0 � 1/l
1=.n�2/
0

D

�
2Kn

A

�1=.n�2/

:

Thus, as l0<
1
2

log 5
2

and .ex�1/=x is monotonically increasing, we have el0�1� al0,
where

aD

p
5=2� 1

log
p

5=2
D 1:26846:

Hence we have

a � l
.n�1/=.n�2/
0

�

�
2Kn

A

�1=.n�2/

;

l0 �
1

a.n�2/=.n�1/

�
2Kn

A

�1=.n�1/

�
1

a

�
Kn

A

�1=.n�1/

:

Combining with the inequality for V, we get

V �A � 1
2
l �A � 1

2
l0 �

1

2a
K1=.n�1/

n A.n�2/=.n�1/:

Hence, by Lemma 13 above,

V �
hn

2a

r
2�e

n�1
A.n�2/=.n�1/;

where

(7) hn D

�
3
�
Pn�3.1/C .1� 1=3n�2/

�
Pn�2.1/C log 3

4

��
23=2e5=2.n� 2/

�1=.n�1/

:

For n� 3 it is easy to check that hn is monotonically increasing to 1. Evaluating a, we
get

V �
hn

2:53692

r
2�e

n�1
A.n�2/=.n�1/

�
1
3
hn

r
2�e

n�1
A.n�2/=.n�1/:

5 Dimension 3 case

We note that the constants in the main theorems proved for general dimension can
be improved in any specific case by analyzing Fn individually. We now consider the
3–dimensional case separately.

In [11], Masai and McShane proved that the volume identity of Bridgeman and Kahn
(see Theorem 1) is equal to the identity obtained by Calegari [7] using a different de-
composition. Applying Calegari’s formula in dimension 3, they obtained an elementary
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closed form for F3, namely

(8) F3.x/D 2�

�
xC 1

e2x � 1

�
:

We note that there is a normalization error in [11] (by a factor of 4�) and the above
formula is the corrected version (see [13], where the correct version is also stated).

Using the formula of Masai and McShane for F3, we can give an elementary argument
that improves the constants in Theorem 3 in the case of nD 3. We would like to thank
the referee for this observation.

Propostion 14 Let M be a compact hyperbolic 3–manifold with nonempty totally
geodesic boundary. Then either L.M / > 1:25 or

eL.M /
� 1�

�

V .M /
:

Proof By elementary calculus for 0� x � 1:25, we have

xC 1

exC 1
�

1

2
:

Thus, for L.M /� 1:25, equation (8) gives

V .M /� F.L.M //D 2�

�
L.M /C 1

eL.M /C 1

�
1

eL.M /� 1
�

�

eL.M /� 1
:

Thus, if L.M /� 1:25,
eL.M /

� 1�
�

V .M /
:

We now compare this with Theorem 3. For nD 3, the theorem states that if L.M /�
1
2

log 5
2

, then

eL.M /
� 1�

g3

p
�e

V .M /
D

0:353076

V .M /
:

Also in dimension 3, Miyamoto and Kojima proved that Miyamoto’s bound in [12]
is optimal and that the lowest volume hyperbolic 3–manifold with totally geodesic
boundary has boundary a genus 2 surface and volume 6:452 (see [10]). We can compare
this optimal bound to the bound obtained using (8) for F3.

As in our prior analysis in Theorem 6, we obtain a volume bound by finding the
common value of F3.x/D 4�S3

�
1
2
x
�
. Solving numerically, we obtain a lower bound

of 4:079, which is comparable to Miyamoto’s optimal bound. This was also observed
in [6, Section 7] but, due to the missing factor in the integral formula for Fn (see the
footnote on page 1259), the bound obtained there was given as 2:986.
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6 Lower bounds for volume of hyperbolic n–manifolds with
totally geodesic boundary

We now consider our bounds in general dimension n � 3. In even dimensions the
generalized Gauss–Bonnet theorem gives

Vol.M /D 1
2
j�.M /jVn �

1
2
Vn D

.nC 1/�.nC1/=2

�
�

1
2
.nC 3/

� :

For odd dimensions, the best lower bound is by Adeboye and Wei [1], with

(9) Vol.M /&
�

2

n

�n2=2
:

Miyamoto [12] showed that, for a hyperbolic manifold M with nonempty totally
geodesic boundary, we have

Vol.M /� �n Vol.@M /

for some constants �n. In [9, Lemma 1.4.3 and Table 1.4.5] (see also [8]), Kellerhals
showed that �n are monotonically increasing with �6 D 0:64652. Thus, for n> 6 odd,
we have

Vol.M /� 1
2
�n

1
2
Vn�1 � 0:32326Vn�1:

When it applies, this bound is much stronger than (9) (applied to the double of M ).

The key ingredient of Miyamoto’s proof is his notion of the hypersphere packings.
These packings have similar properties to the sphere packings in constant curvature
spaces. In his paper, Miyamoto proved a hypersphere analogue of the well-known
Böröczky’s sphere packing theorem, which says that any sphere packing of radius r

in an n–dimensional space of constant curvature has density at most that of nC 1

mutually touching balls in the regular n–simplex of edgelength 2r spanned by their
centers. Following this line of argument, the constant �n in Miyamoto’s volume bound
is given by the ratio of the volumes of certain truncated and regular hyperbolic simplices.
These volumes can be further related to the volumes of orthoschemes. In her thesis [9],
Kellerhals was able to explicitly estimate the latter volumes.

We now show that our results give a new proof of a linear bound for Vol.M /. By
Theorem 6, either

Vol.M /� 1
4

log 5
2

Vol.@M /
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or
Vol.M /� 1

3
hn

r
2�e

n�1
.Vol.@M //.n�2/=.n�1/;

where hn monotonically increases to 1. The first bound is linear and implies, for n odd,

Vol.M /� 1
8

log 5
2

Vn�1:

To show that the second bound also gives us a linear lower bound in terms of Vn�1, we
note that, by Stirling’s approximation,

Vn D
.nC 1/�.nC1/=2

�
�

1
2
nC 3

� �
1
p

2

�
2�e

nC1

�n=2
�

1
p

2

�
2�e

n

�n=2
:

Therefore,

Vol.M /� 1
3
hn

r
2�e

n�1

�
1
2
Vn�1

�.n�2/=.n�1/
�

1
3
hn �

1
2
Vn�1 D

1
6
hnVn�1:

Thus, for n odd, we have

Vol.M /�min
�

1
8

log 5
2
; 1

6
hn

�
Vn�1;

proving Theorem 8.

This way we obtain another proof of a lower bound linear in Vn�1 using different
methods. The answers are remarkably similar in spite of the different approaches. To
compare, our method gives a linear constant tending to 1

8
log 5

2
'0:11453 and Miyamoto

and Kellerhals give a slightly better bound of 0:32326. It would be interesting to see if
there is any deeper relation between the two.

In conclusion, let us remark that it is widely believed that these bounds for volumes of
hyperbolic manifolds, as well as the Gauss–Bonnet bound in even dimensions, are far
from sharp. The sharp bounds are known for arithmetic orbifolds, and they imply good
bounds for arithmetic manifolds (see [3; 4]). These bounds grow superexponentially
fast with the dimension. It is not known if there exists a hyperbolic n–manifold whose
volume is less than the minimal volume of an arithmetic n–manifold.
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